For Students Entering the Chemical Engineering Degree Program

Last Revision: AY 2015-2016
Table of Contents

- Letter from the Chair
- Overview
 - Mission and Goals
 - Undergraduate Program Educational Objectives
 - Undergraduate Program Educational Outcomes
- Academic Policies, Honors and Degree Requirements
 - Faculty Advisors
 - Transfer Credit
 - Consortium Courses
 - Dean’s Honor Roll
 - Attendance Regulations
 - Academic Suspension and Readmission
 - Graduation
- Accreditation Requirements Regarding Course Prerequisites
- Social Science and Humanities Electives
 - Table 1: Afro-American Studies Requirements
 - Table 2: Humanities Options
 - Table 3: Social Science Options
- Chemical Engineering Curriculum
 - Freshman Year
 - Sophomore Year
 - Junior Year
 - Senior Year
- Courses, Pre-requisites and Corequisites
- Flowchart of B.S. Ch.E. Curriculum
- Faculty and Staff
- Research & Teaching Laboratories
- Offices & Facilities
- Department Bulletin Board
- Student Organizations
- Office of Student Services
- Code of Ethics of Engineers
From the Chair, Department of Chemical Engineering

I would like to take this opportunity to welcome you to Howard University and the Department of Chemical Engineering in the College of Engineering, Architecture and Computer Sciences (CEACS). I am delighted that you have chosen to enroll in our program and work towards graduating with a Bachelor of Science degree in Chemical Engineering (BSChE). Our undergraduate program in chemical engineering is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). You should be aware that the department also offers the Master of Science in Chemical Engineering (MSChE) and you are encouraged to set your academic goals and sights high enough to work towards obtaining an advanced degree in chemical engineering, either here at Howard or at another accredited university.

The Department of Chemical Engineering was established in 1969 with the appointment of a chair and the admission of five students to the program. Since then, the department has grown to include six regular faculty with around 90 undergraduate students and 15 graduate students in the MSChE program. Over the years, the department has produced many outstanding graduates who have gone on to successful and exemplary careers in industry, academia and government. Our students have also gone on to distinguished careers in other professions including medicine, law, and management. With the excellent and rigorous academic preparation provided by our program, we are confident that when you complete the program, you will be in a strong position to take full advantage of the many opportunities available to our graduates in science, engineering, technology, medicine, business and government.

In this Handbook, you will find the listing of courses designed for a four-year curriculum and many other resources that you will need during your sojourn at Howard University. You will find this information useful and critical to your success here; however, this Handbook does not provide a complete guide to information you need for your day-to-day stay here at Howard. You should definitely consult other university and college publications such as the H-Book, the Student Reference Manual, the Directory of Classes as well as The Howard University Undergraduate Bulletin. Some of this information is available on the web at http://www.howard.edu and some may be available in hard copy format. Please take time to visit the Office of Student Services in Room 1114 in L.K. Downing (LKD) Hall and acquaint yourself with other University and College resources; also, please feel free to visit the Office of the Department of Chemical Engineering in Room 1009 in LKD Hall. Again, let me take this opportunity to welcome you to Howard and the Department of Chemical Engineering. I invite your questions and comments.

The Department of Chemical Engineering faculty and staff are committed to continuous improvements of our programs. We encourage your questions and comments on the various aspects of our program and are particularly interested in your comments regarding the program’s educational objectives, outcomes and curriculum.

Ramesh C. Chawla, Ph.D.
Professor and Chair
Overview

Chemical Engineering is the rigorous study of a broad range of systems involved in the transformation of materials and energy from one form to another. It focuses on the analysis of the chemical, physical and biological phenomena that form the basis of any process and culminates in process systems designs that are critically informed by consideration of relevant environmental, social and safety concerns.

The Department of Chemical Engineering offers an undergraduate program leading to the Bachelor of Science degree in Chemical Engineering and a graduate program of course work and research leading to the Master of Science in Chemical Engineering. The undergraduate program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). Chemical Engineering Department is one of six departments in the College of Engineering, Architecture and Computer Sciences at Howard University. Howard University is a private, coeducational institution located in the heart of the diverse, vibrant, multicultural metropolitan area that is home to the nation’s capital, Washington, DC. The region offers an unsurpassed breadth of governmental, private, and academic resources for education and research.

Mission & Goals:

The mission of the Chemical Engineering Department is to produce outstanding chemical engineering graduates prepared to become technological, managerial and public service leaders with a keen sense of ethical and social responsibility, and grounded in a holistic appreciation of technology. The faculty and staff are committed to providing a learning environment that instills creative and critical thinking, a solid technical foundation, competence and facility in information technology use, and a sensitivity to environmental and safety issues.

Program Educational Objectives:

The educational objectives of the Chemical Engineering program, defined to be achieved by our graduates within five years of their graduation, are to produce graduates, who are:

1. practicing chemical engineering in a variety of contemporary industrial settings.
2. pursuing advanced study and research in chemical engineering and other related disciplines.
3. taking leadership roles in their chosen careers.

Student Outcomes

Students successfully completing our program will have:

(a) an ability to apply knowledge of mathematics, science, and engineering
(b) an ability to design and conduct experiments, as well as to analyze and interpret data
(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
(d) an ability to function on multidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems
(f) an understanding of professional and ethical responsibility
(g) an ability to communicate effectively
(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
(i) a recognition of the need for, and an ability to engage in life-long learning
(j) a knowledge of contemporary issues
(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
(l) an understanding of issues related to minorities and gender diversity, society and culture, and an historical awareness of Africa and its Diaspora

Academic Policies, Honors and Degree Requirements

This information has been prepared as a convenience for undergraduate Chemical Engineering students and their faculty advisors. **It is not intended to replace the Howard University Bulletin that is the official University publication on all matters concerning academic policy.** Students and their faculty advisors are encouraged to become familiar with information contained in the Howard University Bulletin and with information presented on the Howard University web site. Students are also encouraged to consult *The H-Book*, which is an official publication of the Office of Student Activities. The H-Book serves as a general resource for all Howard University Students.

Faculty Advisors

Students in the Department of Chemical Engineering are assigned a faculty advisor at the beginning of their first semester in residence. Students are required to consult with their faculty advisors on a regular basis on all academic matters and career objectives. During registration, each student’s advisor is provided with an alternate PIN number which the student will need in order to register for their courses. This PIN will only be provided to the student by their advisor after consultation on, and approval of, courses they should register for in the following semester. Faculty advisors maintain an academic check sheet for their advisee’s in order to monitor student progress and adherence to all prerequisite, co-requisite and program curricular requirements, and it is the student’s responsibility to ensure that they are following the program.

Transfer students are also assigned an advisor when they are accepted into the program. It is the student’s responsibility to ensure that all courses that have been taken at other institutions meet the department requirements and have been accepted by the advisor to be part of the student’s academic record for graduation.

Transfer Credit

Transfer credit is awarded after review of official transcripts from all of the student’s previous institutions by the Department of Chemical Engineering. Courses for which transfer credit is given must be equivalent to Howard University courses in content, prerequisites, co-requisites, and credit hours. No credit will be transferred for courses that do not meet the prerequisites of courses in the chemical engineering curriculum at Howard University. Only courses in which a grade of “C” or better was obtained at an accredited institution are transferable. Credits for some courses offered by the College of Arts and Sciences are transferable from international institutions if those courses have been evaluated by the University and are considered equivalent to courses offered at Howard University. The Department also transfers credit for Advanced Placement level courses if the score meets the requirements set by the department at Howard University that offers a similar course. To establish this, the student must provide official course descriptions and other supporting documentation, including a current University Catalog (or web-based course description) from all institutions in which transfer credit is requested. Applications for transfer credit may be obtained from the office of the Department of Chemical Engineering.

Consortium Courses

Howard University offers its qualified undergraduate and graduate degree students the opportunity to enroll in courses in the Washington Metropolitan Area Consortium of Universities (WMACU), including Catholic University, Georgetown University, George Washington University, Trinity College, the University of Maryland, George Mason University and the
University of the District of Columbia. Courses to be pursued through the Consortium must be courses that are not available at Howard University during the given semester or year. Details concerning enrollment in consortium courses are contained in the Howard University Student Reference Manual and Directory of Classes available on the Web each semester.

Dean’s Honor Roll

Students with a grade point average of at least 3.0 based on a minimum load of 14 credits for the semester will have their names placed on the Dean’s Honor Roll.

Attendance Regulations

All students are expected to attend classes regularly and promptly. Students who are absent from classes or laboratory periods are responsible for the entire work of the course. Members of the faculty may hold students responsible for regular and prompt class attendance. Individual faculty may also include attendance and class participation as a component of the grade received for the course.

Any student who does not take a scheduled mid-term or final examination must provide medical or official athletic reasons in writing in order obtain the approval of his or her instructor to take a substitute examination. A student who does not secure such approval will receive a grade of zero for the examination missed.

Faculty members are responsible for reporting to the Assistant Dean of the College of Engineering, Architecture and Computer Sciences the names of students whose repeated absences or tardiness are, in their opinion, impairing the student’s work. In such cases, the Assistant Dean will take appropriate action, which may include withdrawing the student from the course.

Academic Suspension and Readmission

The Department of Chemical Engineering adheres to the policy published by the University. Details concerning academic probation, suspension and readmission after suspension are published in the *Howard University Bulletin* and in the *Student Reference Manual* and *Directory of Classes*.

Graduation

Students must be recommended for graduation by the faculty of the College of Engineering, Architecture and Computer Sciences. Formal applications for graduation are required. Application forms may be obtained from the Office of the Assistant Dean, Room 1114 LKD Hall. Application should be made approximately seven months in advance of the anticipated date of graduation. A copy of this application must be submitted to the Chemical Engineering Department Office for filing. If a student does not graduate when expected, the student must reapply for graduation.

All students should consult with their advisors or with the Chair of the Department of Chemical Engineering prior to the published deadline to add courses for the fall semester of the academic year in which they plan to graduate. This is imperative in order to assure that their proposed program of study will allow them to meet all academic requirements for graduation in that academic year.

Disclaimer: Individual departments reserve the right to make any changes which supersede the information listed here. Please consult with each department for the latest information.

Requirements Regarding Course Prerequisites

Students enrolled in the Chemical Engineering Program must follow the curriculum published by the department. The student’s advisor and the Chair of the department must approve any deviation from the published curriculum. Students should also be aware that the following procedures will be followed to enforce and ensure compliance with current prerequisite and co-requisite requirements:
• Following General Mandatory Registration, the course schedule of each student will be reviewed by his/her department. Students will be “withdrawn” from classes for which they do not have the proper pre-requisites or co-requisites.
• At the beginning of each semester, instructors in CEACS will require each student to complete a pre-requisite/co-requisite survey for his/her class. Students who do not complete and sign the survey or do not have the required pre- and co-requisites will be “withdrawn” from the class.

Social Science, Humanities and Afro-American Studies Requirements

In the interest of making engineers fully aware of their social responsibilities and better able to consider related factors in decision-making processes and to be broadly educated, course work in the humanities, social sciences and Afro-American studies is required as an integral part of the chemical engineering program. Students must include courses at both a lower level and an advanced level and may not limit selections to unrelated introductory humanities and social science courses. *Therefore, all students should consult closely with their faculty advisors to be certain that these requirements are met.*

Social science and humanities electives are offered primarily through the College of Arts and Sciences, although some electives may be selected from course offerings of the Schools of Education and Business. It is important to remember that *all social science and humanities elective sequences require the approval of the student’s major department.*

Each student must complete at least 9 credits in the social science/humanities areas as follows:

- Complete three credit hours (one course) per the University requirements in Afro-American studies. Examples are provided in Table 1 and each semester the Schedule of Classes includes a listing of courses that will satisfy this University requirement.
- Choose either the “Literature” or Non-Literature” area from the Humanities elective in Table 2 and select one credits (one courses) from that area.
- Select an option consisting of three credit hours (one course) from the Social Science Options listed in Table 3.

Any exceptions to the above must be requested in writing to the Chair of the Department for consideration and must be approved prior to enrollment in the course(s).

1. Afro-American Studies Requirement (One Course Required)

Table 1: Afro-American Studies Options

- HIST-005 or HIST-006 Intro to the Black Diaspora
- ENGL-150 Afro-American Lit I
- ENGL-151 Afro-American Lit II
- AFRO-005 Intro to Afro-American Studies I
- AFRO-006 Intro to Afro-American Studies II
- POLS-168 Pan-Africanism
- MUTP-100 Blacks in the Art

2. Humanities Requirements (One Courses Required, Lower and Upper Level, With Either Literature or Non-Literature Emphasis)

Table 2A: Humanities Literature Emphasis Options

Humanities Literature Emphasis Lower Level Course Elective Options

- CLAS-101 Greek Literature in English
- CLAS-102 Roman Literature in English
- CLAS-108 Greek Drama
- CLAS-109 Classical Mythology
- CLAS-113 Women in the Ancient World
- ENGL-050 Introduction to Poetry
- ENGL-151 Intro to Prose Fiction
- ENGL-142 Major English and American Writers
- ENGL-143 Intro to General Literature
- ENGL-054 Afro-American Literature I
- ENGL-055 Afro-American Literature II
- FREN-100 Francophone Literature in English
- RUSS-100 Russian Short Stories
- RUSS-101 Literature of Revolution
- SPAN-100 Hispanic Literature in English
- CLAS-016 Literature of the Ancient World
- HUMA-015 Literature of the Modern World

Humanities Literature Emphasis Upper Level Course Elective Options

- CLAS-114 Lyrics Poetry in Classical Antiquity
- ENGL-053 Highlights in Afro-American Literature
- ENGL-107 Women in Literature
- GREM-101 Literature of Love
- ENGL-168 Modern Caribbean Literature
- CLAS-014 Introduction to Humanities I
- CLAS-015 Introduction to Humanities II
- ENGL-014 Introduction to Humanities I
- ENGL-015 Introduction to Humanities II

Table 2B: Humanities Non-Literature Emphasis Options

Humanities Non-Literature Emphasis Lower Level Course Elective Options

- GERM-100 Individual and Society
- GERM-109 Northern Myths and Legends
- GERM-111 Classics Films in English
- GERM-109 Slavic Mythology

Humanities Non-Literature Emphasis Upper Level Course Elective Options

- CLAS-103 Classical Art
- CLAS-111 Satire and Comedy in the World
- ENGL-052 Introduction to Drama
- MUSC-100 Intro to Music
- MUTP-100 Blacks in the Arts
- ARTH-161 Art Appreciation
- THAC-010 Introduction to the Theatre
- FREN-106 Francophone Film

3. **Social Science Requirements (One Courses Required)**

Table 3: Social Science Lower/Upper Level Sequence Options
Please note that the approved courses in the African-American Studies Cluster are always listed in the STUDENT REFERENCE MANUAL and DIRECTORY OF CLASSES.

Physical Education Requirements

Undergraduate students are required to complete one course in Physical Education.

If in doubt about any information contained herein, students should consult the Howard University Bulletin and/or their Advisor. The final responsibility for the fulfillment of all requirements for the degree lies with the student. Academic clearances for the degree BSChE will be issued by the Department of Chemical Engineering if and only if the candidate for graduation has satisfied all published requirements for the degree. The Department of Chemical Engineering will not consider exceptions to these requirements.
The Chemical Engineering Curriculum contained in this Handbook is designed for students to complete the program in four years. It is a recommended schedule and may be adjusted in consultation with the advisor to accommodate longer time frame for completion of B.S. degree.

Chemical Engineering Curriculum

FRESHMAN YEAR

Fall Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGPP-101 Introduction to Engineering</td>
<td>2</td>
</tr>
<tr>
<td>MATH-156 Calculus</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-003 General Chemistry Lecture I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-005 General Chemistry Lab</td>
<td>1</td>
</tr>
<tr>
<td>ENGL- English</td>
<td>3</td>
</tr>
<tr>
<td>Elective (Humanities/Social Sciences/African American Studies)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours

| 17 |

Spring Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEG-102 Introduction to Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH-157 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-004 General Chemistry Lecture II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL- English</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credit Hours

| 15 |
SOPHOMORE YEAR

Fall Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-013 Physics I Lecture</td>
<td>3</td>
</tr>
<tr>
<td>PHYS-023 Physics I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH-158 Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-141 Organic Chemistry Lecture</td>
<td>3</td>
</tr>
<tr>
<td>SYCS-165 Sci. Computing for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-201 ChE Material Balance</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS-014 Physics II Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-145 Organic Chemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>MATH-159 Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>CHEM-142 Organic Chemistry Lecture</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-202 ChE Calculations II</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>
JUNIOR YEAR

Fall Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-171 Physical Chemistry Lecture I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM-173 Physical Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEG-301 Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-303 ChE Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>EECE-310 Principles of Electronics</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours | **13** |

Spring Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-172 Physical Chemistry Lecture II</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-302 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-306 ChE Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Elective (Humanities/Social Sciences/African American Studies)</td>
<td>3</td>
</tr>
<tr>
<td>Elective (Technical)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours | **15** |

SENIOR YEAR
Fall Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEG-401 Mass Transfer /Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-407 Process Design I</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-405 Ch.E. Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-403 Chemical Reaction Engineering (Kinetics)</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Discipline/Field</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEG-402 Process Control</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-414 Process Design II</td>
<td>3</td>
</tr>
<tr>
<td>CHEG-xxx Elective Course (Ch.E.)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS REQUIRED FOR BSChE 120

PREREQUISITES AND CO-REQUISITES

NOTE: The following prerequisites/co-requisites listing represents the information available during AY 2011-12. For courses outside chemical engineering department, this may represent only partial listing of prerequisites/co-requisite courses. Please consult the brochure and website for each individual department for up to date information.

CHEMICAL ENGINEERING MAJOR COURSES
<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
<th>Co-Requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGPP-101</td>
<td>Intro to Engineering</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEG-102</td>
<td>Intro to Ch.E. Design</td>
<td>3</td>
<td></td>
<td>CHEM 003</td>
</tr>
<tr>
<td>CHEG-201</td>
<td>Ch.E. Material Balances</td>
<td>3</td>
<td>MATH 156, CHEM 003</td>
<td></td>
</tr>
<tr>
<td>CHEG 202</td>
<td>Ch.E. Energy Balances</td>
<td>3</td>
<td>CHEG 201, MATH 157</td>
<td></td>
</tr>
<tr>
<td>CHEG-301</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>CHEG 202, PHYS 013</td>
<td></td>
</tr>
<tr>
<td>CHEG-302</td>
<td>Heat Transfer</td>
<td>3</td>
<td>MATH 159</td>
<td>CHEG 301</td>
</tr>
<tr>
<td>CHEG-303</td>
<td>Ch.E. Thermodynamics</td>
<td>3</td>
<td>CHEG 202, PHYS 013</td>
<td></td>
</tr>
<tr>
<td>CHEG-306</td>
<td>Ch.E. Analysis</td>
<td>3</td>
<td>CHEG 301, MATH 159</td>
<td>SYCS 165</td>
</tr>
<tr>
<td>CHEG-401</td>
<td>Mass Transfer/Separation Processes</td>
<td>3</td>
<td>CHEG 302, 303, CHEM 171/*PoI</td>
<td></td>
</tr>
<tr>
<td>CHEG 402</td>
<td>Process Control</td>
<td>3</td>
<td>CHEG 302, CHEG 306/*PoI</td>
<td></td>
</tr>
<tr>
<td>CHEG-403</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
<td>CHEG 301, 303, CHEM 141/*PoI, MATH 159</td>
<td></td>
</tr>
<tr>
<td>CHEG 405</td>
<td>Ch.E. Laboratory</td>
<td>3</td>
<td>CHEM 173 OR CHEM 145</td>
<td>CHEG 401</td>
</tr>
<tr>
<td>CHEG-407</td>
<td>Process Design I</td>
<td>3</td>
<td>CHEG 303, CHEM 171/*PoI</td>
<td>CHEG 302, 401</td>
</tr>
<tr>
<td>CHEG 414</td>
<td>Process Design II</td>
<td>3</td>
<td>CHEG 306, 401, 403, 407, CHEM 142, CHEM 172/*PoI</td>
<td></td>
</tr>
<tr>
<td>CHEG-xxx</td>
<td>Ch.E. Tech Elective</td>
<td>3</td>
<td>Variable Pre-req.; perm. of instructor</td>
<td></td>
</tr>
</tbody>
</table>

SUB-TOTAL 44

* PoI- Permission of Instructor

REQUIRED ENGINEERING COURSES (FOR CHE)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
<th>Co-Requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYCS 165</td>
<td>Sci. Computing for Engineers</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EECE 310</td>
<td>Prin. of Electronics</td>
<td>2</td>
<td>MATH 159; PHYS 014</td>
<td></td>
</tr>
</tbody>
</table>
Engineering Elective

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx-xxx</td>
<td>Engineering Elective</td>
<td>3</td>
<td>Variable Pre-req.; perm. of instructor</td>
</tr>
</tbody>
</table>

Eng./Tech Elective

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx-xxx</td>
<td>Eng./Tech Elective</td>
<td>3</td>
<td>Variable Pre-req.; perm. of instructor</td>
</tr>
</tbody>
</table>

SUB-TOTAL 11

REQUIRED SCIENCE AND MATH COURSES

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
<th>Co-Requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 003</td>
<td>General Chem Lecture I</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 004</td>
<td>General Chem Lecture II</td>
<td>4</td>
<td>CHEM 003</td>
<td></td>
</tr>
<tr>
<td>CHEM 005</td>
<td>General Chem Lab I</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 141</td>
<td>Organic Chem Lecture I</td>
<td>3</td>
<td>CHEM 004</td>
<td></td>
</tr>
<tr>
<td>CHEM 142</td>
<td>Organic Chem Lecture II</td>
<td>3</td>
<td>CHEM 141</td>
<td></td>
</tr>
<tr>
<td>CHEM 145</td>
<td>Organic Chem Lab</td>
<td>3</td>
<td></td>
<td>CHEM 141 OR 142</td>
</tr>
<tr>
<td>CHEM 171</td>
<td>Physical Chem Lecture I</td>
<td>3</td>
<td>CHEM 004; MATH 159</td>
<td></td>
</tr>
<tr>
<td>CHEM 172</td>
<td>Physical Chem Lecture II</td>
<td>3</td>
<td>CHEM 171</td>
<td></td>
</tr>
<tr>
<td>CHEM 173</td>
<td>Physical Chem Lab I</td>
<td>2</td>
<td></td>
<td>CHEM 171</td>
</tr>
<tr>
<td>MATH 156</td>
<td>Calculus I</td>
<td>4</td>
<td>Acceptable Math Placement Exam</td>
<td></td>
</tr>
<tr>
<td>MATH 157</td>
<td>Calculus II</td>
<td>4</td>
<td>MATH 156</td>
<td></td>
</tr>
<tr>
<td>MATH 158</td>
<td>Calculus III</td>
<td>4</td>
<td>MATH 157</td>
<td></td>
</tr>
<tr>
<td>MATH 159</td>
<td>Differential Equations</td>
<td>4</td>
<td>MATH 157</td>
<td></td>
</tr>
<tr>
<td>PHYS 013</td>
<td>Physics I Lecture</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 014</td>
<td>Physics II Lecture 3</td>
<td>3</td>
<td>PHYS 013</td>
<td></td>
</tr>
<tr>
<td>PHYS 023</td>
<td>Physics I Laboratory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUB-TOTAL 49

REQUIRED ENGLISH, HUMANITIES AND SOCIAL SCIENCE COURSES

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
</tr>
</thead>
</table>

ENGL 002 is Prerequisite for ENGL 003

African American Studies 3 (See Table 1) Variable Prerequisites

Humanities 3 (See Table 2A and 2B) Variable Prerequisites

Social Science 3 (See Table 3) Variable Prerequisites

SUB-TOTAL 15

REQUIRED PHYSICAL EDUCATION COURSES

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Cr.</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHED xxx</td>
<td>PE 1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

SUB-TOTAL 1

GRAND TOTAL 120

Figure 5: BSChE Curriculum Flowchart

NOTE: Chemical Engineering Department has a firm policy on enforcing pre-requisite and co-requisite requirements. The Chair of the department may remove any student from a course at any time should a lack of a required pre-/co-requisite be brought to his attention. Prior to dropping any course, all students are required to meet with their advisors to discuss the future ramifications for their educational program.
Undergraduate Chemical Engineering Curriculum

General Education

- **English**
ENGL-002 (3)
- **Afr. Amer. Studies**
3 (3)
- **Humanities/ Soc. Sci.**
2 (3)

Chemistry

- **Gen. Chem.**
CHEM-003 (4)
- **Chem. lab**
CHEM-005 (1)
- **Gen. Chem. II**
CHEM-004 (4)
- **Org. Chem.**
CHEM-141 (3)
- **Org. Chem. II**
CHEM-142 (3)
- **Org. Chem. lab**
CHEM-145 (3)
- **Phys. Chem. I**
CHEM-171 (3)
- **Phys. Chem. II**
CHEM-172 (3)
- **Phys. Chem. lab**
CHEM-173 (2)
- **Separation Proc.**
CHEG-401 (3)
- **Process Design**
CHEG-407 (3)
- **ChE lab**
CHEG-405 (3)
- **Eng. Elective**
3 (3)
- **Process Design II**
CHEG-414 (3)

Engineering

- **Intro. Eng.**
EGPP-101 (2)
- **Intro. ChE**
CHEG-102 (3)
- **Mass Balances**
CHEG-201 (3)
- **Energy Balances**
CHEG-202 (3)
- **Elemental Computation**
SYCS-165 (3)
- **Fluid Mech.**
CHEG-301 (3)
- **Heat Trans.**
CHEG-302 (3)
- **CHE Thermo**
CHEG-303 (3)
- **CHE Analysis**
CHEG-306 (3)
- **Proc. of Electronics**
EECE-310 (2)
- **Process Control**
CHEG-402 (3)
- **CHE Elective**
3 (3)
- **Process Design II**
CHEG-414 (3)

Math

- **Calculus I**
MATH-156 (4)
- **Calculus II**
MATH-157 (4)
- **Calculus III**
MATH-158 (4)

Physics

- **Phys I**
PHYS-013 (3)
- **Phys II**
PHYS-014 (3)
- **Phys I lab**
PHYS-023 (1)
- **Diff. Equ.**
MATH-159 (4)
- **Acceptable Math Placement Exam**

Credit Hrs

- **First Year**: 34
- **Sophomore Year**: 33
- **Junior Year**: 29
- **Senior Year**: 30

Co-requisite Pre-requisite Permission of Instructor
Faculty Directory

Ramesh C. Chawla, Ph.D., Professor and Chair
Department of Chemical Engineering
2300 Sixth Street, NW, Washington, DC 20059
Phone: (202) 806-6617; Fax: (202) 806-4635; e-mail: rchawla@howard.edu

<table>
<thead>
<tr>
<th>Name & Rank</th>
<th>Specialty</th>
<th>Contacts (202)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Preethi L. Chandran, Ph.D., Assistant Professor</td>
<td>Computational Bioengineering, Multi-scale Modeling, Tissue Engineering, DNA Nanoparticles, Biomechanics, Polymer and Gel Biophysics.</td>
<td>806-4595</td>
</tr>
<tr>
<td>Ramesh C. Chawla, Ph.D., Professor and Chair</td>
<td>Reaction kinetics and engineering, bioremediation, thermal processes and environmental engineering.</td>
<td>806-6617 rchawla@howard.edu</td>
</tr>
<tr>
<td>James W. Mitchell, Ph.D., David and Lucile Packard MSRCE Professor and Dean</td>
<td>Materials chemistry and engineering research; nanomaterial science, technology processing.</td>
<td>806-6569 jwm@msrce.howard.edu</td>
</tr>
<tr>
<td>John P. Tharakan, Ph.D., Professor</td>
<td>Bioenvironmental engineering; protein production and purification, bioreactor design and analysis.</td>
<td>806-4796 jtharakan@howard.edu</td>
</tr>
<tr>
<td>Patrick Ymele-Leki, Ph.D., Assistant Professor</td>
<td>Application of chemical engineering principles to bio-films and medical applications.</td>
<td>806-4811 Patrick.ymeleleki@howard.edu</td>
</tr>
</tbody>
</table>

Adjunct Faculty

Dr. Tina Brower-Thomas, Adjunct Lecturer
Dr. Philip Chen, Adjunct Professor
Dr. Robert J. Lutz, Visiting Professor
Mr. Thomas Wallen, Adjunct Associate Professor

Research and Teaching Laboratories

- H.U. Chemical Energy Research Lab Room G-05/07 806-6766
- Chemical Engineering Shop/Storage Room G-11 None
- Unit Operations Lab Room G-10 806-5627
- Environmental Engineering Research Lab Room B-15 None
- Biochemical Engineering Research Lab Room B-17 806-5283
- Biomaterials & Biopolymers Research Lab Room B-19 806-5494
- Separations Process Research Lab Room B-21 806-6641

Offices and other Facilities

- Ch.E. Conference Room 1005 LKD; 806-4854
- Graduate Office 1010 LKD; 806-4855
- AIChE Office 1012 LKD; 806-4693

Department Bulletin Board

The Department of Chemical Engineering keeps a bulletin board in order to maintain contact with students. On the bulletin board you will find the following:

- A listing of faculty advisors for all undergraduate students in the Chemical Engineering Department
Opportunities for graduate studies at Howard and other institutions.
Job opportunities.
Research opportunities at Howard University and at other institutions.
Request for students to report to the Department office for important information.
Any other information that is important to students in the Department of Chemical Engineering

It is important that all students in the Department of Chemical Engineering check the bulletin board regularly.

Student Organizations

Student Chapter of the American Institute of Chemical Engineers (AIChE). All students in the undergraduate and graduate program are encouraged to join this organization and participate fully in its activities. The AIChE Office is located in Room 1012 in LKD Hall.

Office of Student Services

The Office of Student Services (Room 1114 LKD) provides counseling, arranges for tutorial services, coordinates special programs, assists with admission and registration, and maintains students records. Financial aid assistance, the Cooperative Education Program and several special academic programs are also administered by this office.

Code of Ethics of Engineers

The Fundamental Principles:

Engineers uphold and advance the integrity, honor and dignity of the engineering profession by:

- Using their knowledge and skills for the enhancement of human welfare;
- Being honest and impartial, and serving with fidelity the public, their employers and clients;
- Striving to increase the competence and prestige of the engineering profession; and
- Supporting the professional technical societies of their disciplines.

The Fundamental Canons:

1. Engineers shall hold paramount the safety, health and welfare of the public in the performance of their professional duties.
2. Engineers shall perform services only in the areas of their competence.
3. Engineers shall issue public statements only in an objective and truthful manner.
4. Engineers shall act in professional manners for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.
5. Engineers shall build their professional reputation on the merit of their services and shall not compete unfairly with others.
6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity and dignity of the profession.
7. Engineers shall continue their professional development throughout their careers and shall provide opportunities for the professional development of those engineers under their supervision.